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Abstract

One of the most cited studies within the field of binary choice models is that of Klein and

Spady (1993), in which the authors propose an estimator that is not only non-parametric

with respect to the choice density but also asymptotically efficient. However, while theo-

retically appealing, the estimator has been found to be very difficult to implement with

poor small-sample properties. This paper proposes a simplified version of the Klein–

Spady estimator, which is shown to be easy to implement, numerically relatively more

stable, and with excellent small-sample and asymptotic properties.
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1 Introduction

As Amemiya (1981) observed, binary choice models are “one of the most important develop-

ments in econometrics”. This prominence stems largely from the widespread occurrence of
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binary choice settings across empirical research. Whether the focus is on individual behav-

ior, institutional decisions, or market responses, many important questions reduce to choices

between two alternatives: work or not, vote or abstain, adopt or reject a technology, and so

on. Given how often such choices arise in applied contexts, credible estimation is essential

for valid inference in social scientific research. This paper is consequently concerned with the

rigorous estimation of binary choice models.

Let us therefore consider the binary variable yi ∈ {0, 1}, observable for i = 1, ..., n cross-

sectional units. The data-generating process (DGP) that we will be considering for this vari-

able is the same as in the bulk of the existing literature. We assume that the realization of yi

is the outcome of some latent continuous variable y∗i , which can be interpreted as the utility

difference between setting yi to 0 or 1;

yi := 1(y∗i ≥ 0), (1)

where a := b means that a is defined by b and 1(A) is the indicator function of the event A

being equal to 1 if A is true and 0 otherwise. We further assume that the latent y∗i has a linear

additive model representation:

y∗i = x′i β
0 + εi, (2)

where xi ∈ X ⊆ Rr is a vector of observed regressors with β0 ∈ Rr being a conformable

vector of coefficients, and εi ∈ R is a stochastic error term. If we denote by F(·) the cumulative

distribution function (CDF) of (εi|x), then P(yi = 1|xi) = F(x′i β
0), and since yi is binary, we

also have

E(yi|xi) = F(x′i β
0). (3)

Because the conditional expectation is completely characterized as a function of x′i β
0, the

model is said to satisfy a “single-index restriction”. It is useful to define G(x′i β
0) := E(yi|xi)

so as to keep this functional dependence explicit.

From this basic latent linear model framework, conventional estimators emerge based on

the choice of the CDF F(·) of the error εi. Assuming that εi is either standard normally or

logistically distributed leads to the probit and logit models, respectively. Meanwhile, the lin-

ear probability model (LPM) – which estimates a binary outcome using least squares linear
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regression – corresponds to a latent linear model specification in which εi is uniformly dis-

tributed over a symmetric, bounded interval around zero (Delle Site and Parmar 2024).

These distributional assumptions on εi in the latent linear model are moreover founda-

tional to the performance and relative merits of parametric binary choice estimators. This is

explicitly the case for traditional binary choice estimators such as probit and logit, which are

estimated via maximum likelihood (ML) and, as such, are consistent and efficient if the under-

lying assumption on the distribution of F(·) is correct, but otherwise are neither. Meanwhile,

outside of the special case in which εi follows a symmetric uniform distribution, the LPM

is well-known to be formally inconsistent and inefficient. Advocates of the LPM neverthe-

less prefer to use it because of its favorable properties as a linear approximator for nonlinear

models (Moffitt 1999, and Angrist et al. 2006), accompanied by the popular but contentious

heuristic belief that linear approximations might still function well in terms of the accuracy of

the resulting inference (see, for example, Angrist and Pischke 2008, and Lewbel et al. 2012 for

contrasting views). However, whether a linear approximation actually works well in binary

choice settings once again hinges on the true distribution of F(·) (Aldrich and Nelson 1984).

The distribution of εi for the latent linear model is therefore critical to evaluating paramet-

ric binary choice models. The assumed distribution of εi gives rise to the various estimators,

but equally the actual distribution of this error term determines whether or not these estima-

tors perform well. As a result, much effort has gone into developing semi-parametric pro-

cedures that do not require correct specification of this distribution (see Ichimura and Todd

2007, for a comprehensive survey). One of the most well-cited studies within this strand of the

literature is Klein and Spady (1993), henceforth abbreviated “KS”. In this study, the authors

propose a distribution-free approach to binary choice models that amends conventional para-

metric approaches by incorporating non-parametric estimation of F(·). The idea is to simply

replace F(·) in the standard log-likelihood function with the Nadaraya–Watson estimator of

the conditional expectation G(·), which by (3) is equal to F(·). The resulting estimator is not

only
√

n-consistent and asymptotically normal, but also efficient in the sense that it attains

the semi-parametric asymptotic efficiency bound that is analogous to the Cramér–Rao lower

bound for parametric ML. As Mittelhammer and Judge (2011) point out, this last property

makes the KS estimator a natural benchmark for binary choice problems.

However, while theoretically appealing, the KS estimator is difficult to implement, as the

log-likelihood function can be badly behaved with saddle points and local optima. Many

studies complain about this. For instance, Menezes-Filho et al. (2008, page 333) write: “We
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choose polynomial estimation after finding the semi-parametric Klein and Spady (1993) esti-

mator to exhibit problematic convergence behavior.” Biewen et al. (2020, Footnote 5) similarly

write: “In our empirical application, we initially experimented with the semi-parametric es-

timators developed by [...] Klein and Spady (1993). A disadvantage of these estimators is

that they exhibit occasional convergence problems [...].” Rothe (2009), in work extending KS

to allow for endogenous regressors, concludes: “One of the major issues of our estimator is

its computational complexity when applied in settings with many regressors and/or obser-

vations. In this case, even evaluating the likelihood function at a specific point is very time

consuming, and the function might have several local maxima. However, these problems

are not specific to our [...] estimator but are encountered in general when computing semi-

parametric optimization estimators such as the ones by Ichimura (1993) or Klein and Spady

(1993)” (pages 59–60). Discussions of this type extend even to econometrics textbooks – for ex-

ample, Cameron and Trivedi (2005, page 485) state that “[t]he attraction of Klein and Spady’s

estimator is that it is fully efficient in the sense that it attains the semi-parametric efficiency

bound. Computation is difficult, however.” Due to these computational issues, a number

of studies have found the estimator to perform poorly in small samples (see Chu et al. 2019,

Frölich 2006, Mittelhammer and Judge 2011, Rothe 2009, and Westerlund and Hjertstrand

2014, to mention a few), while others indicate they had to exclude the KS estimator altogether

(see, for example, Horowitz and Härdle 1996).

Observations like these have led to the development of alternative estimation approaches

with improved numerical properties based on, for example, empirical likelihood functions,

mixture distributions, local likelihood logit, indirect estimation, and Fourier flexible forms

(see, for example, Coppejans 2001, Chen and Randall 1997, Frölich 2006, Mittelhammer and

Judge 2011, and Westerlund and Hjertstrand 2014). However, these approaches are rarely

used for several reasons. First, understanding and choosing between the various alternatives

is technical and often opaque to many practitioners, with Ichimura and Todd (2007, page 5375)

noting that “[a] barrier to implementing the new estimators is how to choose from a bewil-

dering array of available estimators.” Second, most such alternatives do not retain the same

theoretical appeal in reaching the semi-parametric efficiency bound as with KS. Finally, they

lack the same basic intuitive appeal of KS. In their popular textbook Mostly Harmless Econo-

metrics, Angrist and Pischke (2008, page xii) write: “A principle that guides our discussion

is that the estimators in common use almost always have a simple interpretation that is not

heavily model dependent,” citing the linear regression model as an exemplar for its simplic-
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ity and robustness to common types of distributional misspecification. The promise of KS is

much the same for binary choice settings; preserving the simple linear model structure for y∗i
that underlies standard parametric estimators, while eschewing the known F(·) assumption

that is the central source of concern and disagreement among these estimators.

The current paper is motivated by recognition of both the strong appeal of KS as well

as its downsides in practice. We propose a simplified version of KS, henceforth abbreviated

“SKS”, that retains the central approach and strengths of KS but amends the non-parametric

estimation of F(·), such that the ubiquitous computational shortcomings arising with KS are

practically eliminated. The way we accomplish this is by estimating the CDF F(·) directly

via non-parametric kernel methods instead of estimating the conditional expectation G(·) via

the Nadaraya–Watson estimator, which we argue is the source of many of the problems of

the original KS estimator. In particular, unlike our proposed CDF estimator, the Nadaraya–

Watson estimator is constructed as a ratio of estimated probability density functions (PDFs)

that, in order to ensure asymptotic validity of the KS estimator, is not restricted to the unit

interval. When this bound is exceeded, the single-index restriction (3) is violated, invalidating

Nadaraya-Watson as an indirect estimator of F(·). Non-parametric PDF estimation is used in

all fields of economics and statistics. As argued by Li and Racine (2007, page 23), the range

of possible applications of non-parametric CDF estimation is equally as great, but it is not

nearly as widely used. The current paper provides an example of a situation in which there

is a clear preference towards CDF rather than PDF estimation. The SKS estimator that results

from doing so is just as intuitive as the original. The main difference is that it is also fast,

numerically stable, and has excellent small-sample properties.

The rest of this paper is organized as follows: In Section 2, we introduce the new estimator,

and study its asymptotic properties. According to the results, SKS is not only
√

n-consistent

and asymptotically normal, but also asymptotically efficient. These findings are supported

by a large-scale Monte Carlo study, the results of which are reported in Section 3. The perfor-

mance of SKS is compared to that of a number of other estimators, including KS. We confirm

that while KS displays characteristic problems with convergence, and parametric estimators

are heavily affected by distributional mispecification, SKS is both reliable and performant

across a wide variety of DGPs. Indeed, SKS even displays near equal performance to pro-

bit when probit is the correct model. Section 4 is concerned with our empirical application

to the behavioral determinants of savings behavior in youth. Using the same data as Sutter

et al. (2013), we find that while KS once again shows numerical instability, SKS is numerically
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very stable. The SKS results support the main finding of Sutter et al. – that impatience neg-

atively affects the savings behavior of youth; however, their finding that math skills are also

important for savings is not supported. We argue that this difference in the results is due to

the preference of Sutter et al. to rely on probit even though the distribution of the regression

errors is unknown and unlikely to be normal. Section 5 concludes. The paper is accompanied

by an online appendix containing the complete set of Monte Carlo results, figures omitted

from the paper, and some additional empirical results.

2 The SKS estimator and its asymptotic properties

2.1 The estimator

Suppose for a moment that F(·) is known. Since yi is binary with P(yi = 1|xi) = F(x′i β
0), we

know that yi is Bernoulli distributed with success probability F(x′i β
0). Thus, given F(·), the

log-likelihood function is given simply by

ℓ(β) :=
n

∑
i=1

[yi ln F(x′i β) + (1 − yi) ln(1 − F(x′i β))], (4)

which when maximized leads to the ML estimator of β0. Of course, this estimator is not

feasible since in practice F(·) is unknown. Instead, KS suggest replacing F(·) with an estimate.

Their choice of which estimator to use is based on the fact that the classical Nadaraya–Watson

estimator is known to be consistent for the conditional expectation G(x′i β
0), which in view of

(3) makes it consistent also for F(x′i β
0). In particular, KS propose using the following leave-

one-out version of the Nadaraya–Watson estimator:

Ĝ(x′i β) :=
v(x′i β)
w(x′i β)

, (5)

where v(x′i β) := ∑n
j ̸=i kh((xj − xi)

′β)yj and w(x′i β) := ∑n
j ̸=i kh((xj − xi)

′β) with kh(v) :=

k(v/h), k(·) : R → R is a kernel function and h > 0 is a bandwidth parameter that may

depend on n.1 Replacing F(·) by Ĝ(·) leads to the following feasible log-likelihood function:

ℓ̂KS(β) :=
n

∑
i=1

τi[yi ln Ĝ(x′i β) + (1 − yi) ln(1 − Ĝ(x′i β))], (6)

1The dependence of Ĝ(x′i β), v(x′i β) and w(x′i β) on h is suppressed in order to avoid cluttering the notation.
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where τi ∈ R is a certain trimming term yet to be discussed. The KS estimator of β0 is maxi-

mizer of ℓ̂KS(β).

In view of (5) and (6), it is clear that maximizing ℓ̂KS(β) can be difficult unless w(x′i β)

– the denominator of Ĝ(x′i β) – is bounded away from 0. This is an issue because in order

to eliminate the asymptotic bias caused by the estimation of G(x′i β
0), KS requires the use of

“higher-order” (or “bias-reducing”) kernels with a certain number of zero moments.2 But

then these kernels are not even nonnegative. In fact, not only can w(x′i β) be zero, but Ĝ(x′i β)

as a whole is also not confined to lie between 0 and 1, which of course causes problems when

taking logs. This is where the trimming term τi in (6) comes in. It is defined as τi := 1(xi ∈ T ),

where T ⊆ Rr is a certain compact set that is chosen such that the probability limit of Ĝ(·) is

bounded away from 0 and 1 on T (see, for example, Ichimura and Todd 2007, and Rothe 2009).

The inclusion of τi in (6) takes care of the above mentioned problems but there are others.

One additional problem is that the binary nature of yi may lead to discontinuities in Ĝ(x′i β),

thus invalidating conventional gradient based optimization algorithms (see Westerlund and

Hjertstrand 2014). Another problem is that while appealing from a theoretical point of view,

higher-order kernels tend to suffer from very poor small-sample performance, to the point

that many studies use standard kernels even though the resulting KS estimators are no longer

asymptotically valid (see, for example, Rothe 2009).

The idea of the present paper is to avoid the aforementioned problems by estimating

F(x′i β
0) directly instead of indirectly via (3) and estimation of G(x′i β

0). While there are many

ways of doing this, in this paper we propose using non-parametric CDF estimation via kernel

methods. Specifically, we suggest estimating F(·) using the following leave-one-out kernel

CDF function (see, for example, Li and Racine 2007):

F̂(x′i β) :=
1

n − 1

n

∑
j ̸=i

Kh((xj − xi)
′β), (7)

where Kh(v) := K(v/h) and K(v) :=
∫ v
−∞ k(w)dw is an integrated kernel. Unlike when k(·)

is a high-order kernel, when it is standard second-order kernel k(·) is also a PDF. We will be

working with second-order kernels, and therefore k(·) is a PDF, which in turn implies that

K(·) is a CDF (see Li and Racine 2007). While K(·) can be chosen as any CDF, two natu-

ral choices arises by setting it equal to either the standard normal CDF, K(v) = Φ(v) :=

2The order of a kernel is defined as the order of the first non-zero moment (see, for example, Li and Racine
2007, Chapter 1, for a formal definition and discussion).
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∫ v
−∞ e−w2/2dw/

√
2π, or the logistic CDF, K(v) = 1/(1 + e−v), in which cases the SKS estima-

tor can be interpreted as a “weighted” probit or logit estimator. Either way, the proposed SKS

objective function is given by

ℓ̂SKS(β) :=
n

∑
i=1

[yi ln F̂(x′i β) + (1 − yi) ln(1 − F̂(x′i β))], (8)

and the resulting SKS estimator β̂ of β0 is defined as

β̂ := arg max
β∈B

ℓ̂SKS(β), (9)

where B ⊆ Rr is the parameter space of β.

The main advantage of using F̂(·) instead of Ĝ(·) is that there is no need for trimming,

since as already pointed out, K(·) is a CDF (see Berg and Politis 2009, for a discussion).

2.2 Asymptotic properties

We begin this section by stating the assumptions on which our asymptotic results are based.

Because we are treating both β0 and F(·) as unknown objects to be estimated from the data,

we require a normalization to rule out degenerate cases. In particular, we know from Cosslett

(1993) that without further restrictions, the constant term (if there is one) is not identified

and that the slope coefficients are only identified up to scale. Let us therefore partition xi as

xi = (x1i, x′2i)
′, where x1i ∈ R is continuous and x2i ∈ Rr−1 is a vector containing all other

regressors (with r ≥ 2). The vector β0 is partitioned conformably as β0 = (β0
1, β0′

2 )
′. The

most common scale normalization scheme, which is also used in this study, is to set β0
1 = 1

(see, for example, Ichimura 1993, KS and Rothe 2009). Location normalization is imposed by

assuming that x2i does not contain an intercept. The rest of the assumptions that we will be

working under are stated below.

Assumption 1. (yi, xi) is independent and identically distributed across i.

Assumption 2. The parameter space B is compact and β0 is an element of its interior.

Assumption 3. The support X of xi is such that 0 < F(x′i β
0) < 1 for all i.
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Assumption 4. The r × r matrix

Σ := E

[
1

F(x′1β0)[1 − F(x′1β0)]

dF(x′1β0)

dβ

(
dF(x′1β0)

dβ

)′]

is positive definite.

Assumptions 1–4 are standard in the literature on semi-parametric binary choice models

(see, for example, Ichimura 1993, KS, Lee 1995, and Rothe 2009). We therefore do not comment

on them.

Assumption 5. F(x′i β
0) = F(x′i β) implies β = β0.

Assumption 5 is also standard in the literature. It is the same as Assumption (C.9) in KS

(see also Ichimura 1993, Lee 1995, and Rothe 2009). Sufficient conditions for Assumption 5

are provided in Section 2.2 of KS.

Assumption 6. The kernel function k(·) is continuously differentiable with the first derivative

satisfying a Lipschitz condition. Also,
∫

k(v)dv = 1, k(v) = k(−v),
∫

v2k(v)dv > 0 and

k(v) = 0 for |v| > 1.

Assumption 6 allows for standard second-order kernels, which contrasts much of the pre-

vious literature where higher-order kernels are needed to reduce the error coming from the

kernel estimation (see, for example, KS and Rothe 2009). As previously explained, the need for

higher-order kernels is problematic because they are not strictly positive everywhere. Thus,

estimators of the CDF based on higher-order kernel are not necessarily contained within the

range [0, 1] or restricted to be nondecreasing (see Berg and Politis 2009). These problems do

not appear in the SKS estimator. In fact, as alluded to earlier in this section, under Assump-

tion 6, K(·) satisfies all the conditions of a CDF.3 This is an important advantage of the SKS

estimator over any other estimator relying on higher-order kernels.

Assumption 7. The bandwidth h satisfies h ∼ n−α with 1/4 ≤ α < 1/3.

KS use fourth-order kernels for constructing the Nadaraya–Watson estimator Ĝ(·) of G(·).
They require that n−1/6 < h < n−1/8, which does not include the “optimal” rate that min-

imizes the asymptotic mean integrated squared error. For kernels of order ν, the optimal

3The only restriction in this regard is Assumption 3, which is again standard in the literature, and is not
particularly restrictive. It holds if X is compact. Should Assumption 3 be deemed too restrictive, F̂(·) can be
trimmed without cost (see Berg and Politis 2009).
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bandwidth is proportional to n−1/(2ν+1) (see, for example, Li and Racine 2007, Chapter 1).

The optimal rate for ν = 4 is therefore given by n−1/9, which is outside the permissible range

of KS. The same is true here. However, there is an important difference. Unlike KS, we esti-

mate F(·), as opposed to G(·), and the optimal bandwidth for CDF estimators is proportional

to n−1/3 (see Hansen 2004, or Li and Racine 2007, Chapter 1). Although n−1/3 is outside the

permissible range given in Assumption 7, it nevertheless comes arbitrary close to satisfying

Assumption 7. Indeed, h can be made arbitrarily close to optimal by setting it proportional to

n−1/(3+ϵ), where ϵ is an arbitrary small positive number.4

We now have all the assumptions we need to state our first asymptotic result.

Theorem 1 (Consistency). Suppose that Assumptions 1–3 and 5–7 are met. Then, as n → ∞,

β̂ →p β0.

Having established the consistency of the new estimator, we now turn to its asymptotic

distribution. The route to asymptotic normality standardly involves use of the mean value

theorem, and the convergence in probability of the Hessian in a neighborhood of β0 (see, for

example, KS, Lee 1995, and Rothe 2009).

We begin by applying the mean value theorem to dℓ̂SKS(β̂)/dβ around β̂ = β0. This gives

0r×1 =
dℓ̂SKS(β̂)

dβ
=

dℓ̂SKS(β0)

dβ
+

d2ℓ̂SKS(β∗)

dβ(dβ)′
(β̂ − β0), (10)

where β∗ lies element-wise between the line segment joining β̂ and β0. By solving this equa-

tion for
√

n(β̂ − β0), we obtain

√
n(β̂ − β0) =

(
− 1

n
d2ℓ̂SKS(β∗)

dβ(dβ)′

)−1
1√
n

dℓ̂SKS(β0)

dβ
. (11)

Lemmas 1 and 2 below provides the limiting behaviour of the components of (11).

4Since ϵ > 0 can be made arbitrarily close to zero, in empirical implementations of the SKS estimator it
makes no difference to actually set ϵ = 0 and choose h ∼ n−1/3. In the Monte Carlo experiments and empirical
applications in Sections 3 and 4, we therefore set h = n−1/3.
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Lemma 1 (Hessian). Suppose that Assumptions 1–7 are met. Then, as n → ∞,

− 1
n

d2ℓ̂SKS(β∗)

dβ(dβ)′
→p Σ.

Lemma 2 (Score). Suppose that the conditions of Lemma 1 are met. Then, as n → ∞,

1√
n

dℓ̂SKS(β0)

dβ
→d N(0r×1, Σ).

The asymptotic distribution of
√

n(β̂ − β0) is an immediate consequence of (11), Lemmas

1 and 2, and Assumption 4, and is given in Theorem 2 below.

Theorem 2 (Asymptotic distribution). Suppose that the conditions of Lemma 1 are met. Then, as

n → ∞,

√
n(β̂ − β0) →d N(0r×1, Σ).

Similarly to KS and Ichimura (1993), estimation of the covariance matrix Σ can be per-

formed in the usual way. The SKS objective function can be treated as though it were the true

log-likelihood function, and standard errors obtained from a conventional likelihood routine

will be asymptotically correct. It is important to note that inference based on such standard

errors is robust to multiplicative heteroscedasticity of a general but known form and het-

eroscedasticity of an unknown form if it depends only on the single-index restriction (see KS

for a discussion).

KS (Theorem 5) showed that their estimator attains the semi-parametric efficiency bound.

Because the asymptotic covariance matrix given in Theorem 2 is the same as the one given in

Theorem 4 of KS, the proposed SKS estimator attains the same bound. It is therefore asymp-

totically efficient. Theorem 3 formalizes this.

Theorem 3 (Asymptotic efficiency). Suppose that the conditions of Lemma 1 are met and that xi

and εi are independent. Then, β̂ is asymptotically efficient.
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3 Monte Carlo simulations

A large-scale Monte Carlo study was conducted to evaluate the small-sample properties of

the SKS estimator relative to KS, probit and the LPM. The full set of results is too numerous

to report here in full. Consequently, in this section, we report aggregated results and present

all disaggregated results in Sections A and B of the online appendix.

3.1 Setup

The DGP is given by a restricted version of (1) and (2) that sets xi = (1, xc
i , xb

i )
′, where xc

i ∈ Rrc

and xb
i ∈ Rrb

are vectors continuous and binary regressors, respectively. The associated vector

of coefficients is given by β0 = (α, β0
1, β0′

2 )
′, where β0

1 = −1 is the slope of the first continuous

regressor, while β0
2 = (1,−1, 1, ...)′ contains the slopes of the remaining r − 2 regressors. This

decomposition of β0 will be useful later. Similarly to Westerlund and Hjertstrand (2014), the

intercept, α, is calibrated so that y = ∑n
i=1 yi/n is “close” to the targeted success probability,

which is one of 0.25, 0.5 and 0.85.5 Following Frölich (2006), the following four regressor

designs are considered:

R1. The first design contains one continuous and one binary regressor (rc = rb = 1). The

continuous regressor is drawn from a chi-square distribution with one degree of free-

dom, henceforth denoted χ2(1), while the binary regressor is drawn from a Bernoulli

distribution with survivor intensity set to 0.5, henceforth denoted Ber(0.5).

R2. In this design, rc = 5 and rb = 1. The first continuous regressor, xc
1,i say, is drawn

from χ2(1), while the remaining four, xc
2,i, ..., xc

5,i, are generated as xc
j,i ∼ xc

j−1,i + χ2(1)

for j = 2, ..., 5. As in R1, the binary regressor is drawn from Ber(0.5). The implied

correlation among the continuous regressors is between 0.5 and 0.9.

R3. Now, rc = 1 and rb = 5. The first binary regressor, xb
1,i say, is drawn from Ber(0.5), while

the remaining four are generated as xb
j,i ∼ Ber(0.4 + 0.4xb

j−1,i), where xb
j,i = ∑

j
l=1 xb

l,i/j.

Hence, if all preceding regressors are equal to 1, the probability that the next regressor

takes on the same value one is 0.8. As in R1, the continuous regressor is drawn as χ2(1).

This means that the correlation between the binary regressors is between 0.1 and 0.4.

5y is calibrated to be at most 0.025 away from the targeted success probability in at least 80% of all replications.
Figure C1 in Section C of the online appendix gives a histogram of the absolute difference between y and the
desired probability over all replications in all Monte Carlo exercises.
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R4. In the last design, rc = rb = 5 with the continuous and binary regressors generated as

in R2 and R3, respectively.

For the error term, εi, we consider another five designs, which are largely based on Frölich

(2006):

E1. In the first design, εi ∼ N(0, 1), which means that the probit model is correctly specified.

E2. In the second design, εi is drawn from a t-distribution with one degree of freedom,

henceforth denoted t(1). This is a symmetric and heavy-tailed distribution where the

mean and variance are undefined, but where the median is 0.

E3. In this design, εi ∼ χ2(3) − 3, which means that the distribution of εi is skewed with

mean 0 and variance 6.

E4. Here, εi = bi(li + 2) + (1− bi)(li − 2), where bi ∼ Ber(0.5) and li is a Laplace distributed

variable with location and scale parameters set to 0 and 1/
√

2, respectively. This implies

that the distribution of εi is bimodal with mean 0 and variance 5.

E5. In the fifth and final design, εi ∼ t(2) · 0.14
√

∑rc

k=1 ∑rb

j=1 xc
k,ix

b
j,i. The distribution of εi is

therefore heteroskedastic with mean 0 and infinite variance.

For each of the four regressor designs, five error designs and three success probabilities,

we consider three sample sizes; n ∈ {250, 500, 1500} (similarly to Rothe 2009). This resulted

in a total of 180 parameterizations of the DGP. The number of replications in each experiment

is set to 1000.

3.2 Implementation

The SKS estimator is implemented as described in Section 2, with K(·) set equal to the logistic

CDF.6 As discussed in Section 2, in the estimation β0 is normalized by removing the intercept

and normalizing the coefficient of the first continuous regressor, β0
1, to 1. The bandwidth h is

set equal to n−1/3, which, as explained in Section 2, is proportional to the optimal choice.

In interest of comparison, we also simulate the LPM, probit and three versions of the KS

estimator. The LPM and probit are fitted with an intercept. The KS estimator is implemented

6We also experimented with K(·) set to the normal CDF. However, we found the logistic CDF to be more
numerically stable than the normal, and therefore opted for this choice.
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as described in Section 2 with k(·) set equal to the logistic PDF. We impose the same normal-

ization as for the SKS estimator. The three KS versions differ only in the choices of bandwidth.

The first version, labelled “KS1”, is based on setting h = n−1/6.02, just as in the Monte Carlo

study of KS. The second version, labelled “KS2”, treats h as an additional parameter that is

estimated along with the slope coefficients (as in, for example, Frölich 2006, and Rothe 2009).7

In the third version, h is determined based on generalized cross-validation (similarly to, for

example, Newey et al. 1990, Gerfin 1996, and Frölich 2006), which is implemented as outlined

in Section 5 of Delecroix et al. (2006). However, since the performance of this version turned

out to be considerably worse than for KS1 and KS2, we do not present the results.8

In order to assess the numerical stability of the estimators, we consider multiple starting

values (similarly to Westerlund and Hjertstrand 2014). Let us therefore denote by βs
1 and βs

2

the starting values for β0
1 and β0

2, respectively. The following six sets of starting values are

considered:

S1. The starting values are set to the true coefficients; that is, βs
1 = β0

1 and βs
2 = β0

2.

S2. βs
1 and βs

2 are set equal to their corresponding LPM estimates.

S3. βs
1 and βs

2 are set equal to their corresponding probit estimates.

S4. βs
1 = |β0

1| and βs
2 = |β0

2|.

S5. βs
1 = |β0

1| and βs
2 = 2.5|β0

2|.

S6. βs
1 = |β0

1| and βs
2 = 5|β0

2|.

For KS2, the starting value for h is always set to n−1/6.02. For the probit estimator, we

naturally drop S3. The starting value for the constant is set to its true value, α. The LPM

obviously does not require initialization and is therefore only presented once.

7Härdle et al. (1993) propose estimating h together with the coefficients in semi-parametric single-index mod-
els using a weighted least squares approach. Although it does not seem to be theoretically verified, it is widely
conjectured that the same approach can be used together with the KS estimator.

8These results are available upon request from the authors. In our simulations, we did not record a single
instance where the KS estimator based on generalized cross-validation performed better than KS1 and KS2 in
terms of bias and root mean squared error (RMSE). In fact, the difference in performance was in a large majority
of the Monte Carlo experiments 10–100 times worse. The poor performance of generalized cross-validation is
consistent with the working paper version of Delecroix et al. (2006). On this issue, they say that [brackets added]
“repeating Steps I.1 and I.2 until convergence one expects some values [of the parameters] very close to those
obtained by joint estimation [of the parameters and bandwidth (as in KS2)]. However our experience proves that
iterating Steps I.1 and I.2 is not only more computational demanding but also leads to more instable results.”
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All computational work was carried out in Matlab. For SKS, KS1 and KS2, the log-likelihood

functions were optimized using the routine fminunc from the optimization toolbox. Only de-

fault settings were used with user-specified expressions for the gradients and Hessian, where

Fisher scoring algorithms were used to maximize the log-likelihood functions. The probit esti-

mator was implemented using the glmfit command from the Statistics and Machine Learning

toolbox.9

3.3 Results

The accuracy of the estimated slope coefficients is assessed based on their bias, root mean

squared error (RMSE) and median absolute deviation (MAD). As already pointed out, for

each estimator we consider 180 parameterizations of the DGP, and for KS1, KS2, KS3, and

SKS we also consider six sets of starting values (for probit we consider five starting values).

This means that the total number of constellations of DGPs, estimators and stating values is

no less than 4500.10 Therefore, in order to report our findings succinctly, in this section we

follow Frölich (2006) and aggregate the results across regressor designs, error designs and

success probabilities.11 The complete disaggregated results can be found in Sections A and B

of the online appendix.

INSERT TABLES 1 AND 2 ABOUT HERE

Tables 1 and 2 present the results for each specification of starting values and n. While

Table 1 contains the results for E1, Table 2 reports the results aggregated over all other error

designs. The reason for presenting the results in this way is that while in E1 probit is efficient

as εi is normally distributed, in E2–E5 it is inconsistent. The information content of Tables 1

and 2 can be summarized in the following way:

• As expected, probit performs well in E1 but not in E2–E5. Moreover, while generally

decreasing in n in E1, the probit RMSE is increasing in n in E2–E5, which is a reflection

9The simulated data and codes to replicate all Monte Carlo results are available from the authors upon re-
quest.

10While not a problem in single applications to real data, with 1000 replications of 4500 DGP constellations –
some of which are rather extreme – occasionally estimation will break down. As a way to address this problem,
we trim out (estimated) success probabilities close to 0 or 1, and only keep pairs (yi, xi) for which this probability
is in the interval [∆, 1 − ∆]. Consistent with the findings of studies such as KS, Lee (1995), and Rothe (2009), the
choice of trimming threshold ∆ did not matter much. We therefore set it arbitrarily to ∆ = 10−12. This is done
for all estimators but probit and the LPM.

11In particular, we stack every Monte Carlo replication in a single vector implying that each replication is
given the same weight in the aggregated results.
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of the fact that the estimator is consistent only in E1.

• The LPM performs reasonably well, and it does so regardless of the error design consid-

ered. Since no starting values are required, it is also numerically stable.

• KS1 is generally numerically more stable than the computationally more costly KS2.

• Initializing KS1, KS2 and SKS at the probit estimates (S3) generally results in poor RMSE

performance in E2–E5, which is unsurprising given the poor performance of probit.

LPM initialization (S2) seems to work much better in this regard.

• SKS is the best-performing estimator in almost every Monte Carlo experiment, with

RMSE and MAD values that are often several times lower than those of KS1 and KS2.

SKS is also numerically stable in the sense that it mostly converges to the same solution

for different starting values. It is only when the initialization is carried out using probit

that the RMSE performance of SKS is poor.

• SKS performs well even when compared to probit in E1, which is noteworthy since in

this design, probit is again based on the true error distribution.

All in all, we find that the proposed SKS approach generally performs well in small sam-

ples and across the DGPs considered. SKS not only outperforms KS1 and KS2 in almost every

Monte Carlo experiment, but it also performs comparably to probit when probit is the cor-

rectly specified model. This combination of performance, robustness, and numerical stability

makes it especially appealing for empirical work. We therefore believe that SKS merits serious

consideration among the bevy of estimators for binary choice models.

4 Empirical application

4.1 Background and data

In this section, we apply our proposed SKS estimator to analyze the economic behavior of

youth. During the last two decades, the economic decision making of children and adoles-

cents has attracted considerable attention, so much that there is by now a separate literature

devoted to it (see Sutter et al. 2019, for a recent survey). Experimental elicitation of behav-

ioral economic preferences – chiefly risk and time parameters – combined with observation

of economic behavior in the field suggests a strong correlation between these parameters and
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fundamental behavior both during youth and later adulthood, suggesting the possibility that

these parameters have a fundamental role in shaping life outcomes.

Sutter et al. (2013) were among the first to document this relationship between experi-

mentally derived preferences and behavior outside the lab for youth. They conducted exper-

iments with 661 children and adolescents, aged 10 to 18 years, through which they obtained

measures of impatience, risk aversion, and ambiguity aversion. They then regressed these ex-

perimental measures on five measures of behavior in the field, including saving, health, and

school performance. Except for their health measure, the dependent variables are all binary.

The reported results support the idea that children’s and adolescents’ experimental choices

are related to their field behavior.

We examine this study as an instance of common practice in applied research, where the

binary choice specification (probit in this study) is made without providing any justification.12

The worry, of course, is that the parametric specification assumes the errors follow a given

distribution, which may not be true. In the case of Sutter et al., the probit model specification

implies an assumption that the errors are normally distributed. If normality is violated, then,

as pointed out earlier, probit is inconsistent, casting doubt on the results reported by Sutter

et al., an issue that, to the best of our knowledge, has not been considered before. In contrast

to a parametric approach, such as probit, KS and SKS are asymptotically valid even when

the distribution of the stochastic errors is unknown. They are therefore more robust in this

regard. The purpose of this section is to investigate the extent to which the conclusions of

Sutter et al. hold up when the estimation is carried out semi-parametrically using the KS and

SKS estimators.

The data we use are taken directly from Sutter et al..13 In their study, they perform a

number of analyses, based on having multiple outcomes and several alternative measures of

impatience. In order to provide a detailed comparison, we focus on one of these specifications,

12We emphasize, however, that this is by no means a criticism of the authors. The vast majority of binary
choice estimation in empirical work employs parametric specifications, nearly always without any distributional
justification. We find this unsurprising as we believe it is unlikely that most contexts provide a compelling ex
ante justification for an imposed distributional assumption. Rather than attempt to justify the distributional
assumption, the most common approach to addressing the risk of distributional mispecification is to estimate
multiple parametric models (for example, both the probit and linear probability models). We emphasize that
this is also problematic, however, because not only is it unclear that any of the parametric specifications are
reasonable in a given setting, but inference only when results are similar or uniformly statistically significant
across multiple models, some of which are wrong by construction, will generate uncontrolled distortions in
both Type I and Type II error probabilities.

13The data can be downloaded from the web site of the American Economic Review at
https://www.aeaweb.org/articles?id=10.1257/aer.103.1.510.
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which takes an indicator for savings behavior as the outcome, and estimate separate models

for each measure of impatience (“Models A-H” in Sutter et al.). Since the results for all models

are very similar, and the same conclusions can be drawn independently of the model, we

focus our discussion on the model that measures impatience based on low-stakes choices

between immediate returns and returns with a 3-week delay (“Model A” in Sutter et al.).

The results from Models B-H using all other different measures of impatience are presented

in Section D of the online appendix. Aside from impatience, the specification includes as

regressors measures of risk aversion and ambiguity aversion, age, an indicator for whether the

participant is female, grades in German and math, number of siblings, and the participant’s

weekly amount of pocket money.

4.2 Implementation

We employ the same LPM, probit, KS1, KS2 and SKS estimators as in the Monte Carlo study of

Section 3. The KS estimator is available as a built-in command in several statistical softwares

and the details of the implementation varies (as opposed to the LPM and probit). In order

to assess the robustness of our conclusions in this regard, in addition to the above mentioned

estimators, we also report the results obtained by applying KS using Stata’s sml command (see

DeLuca 2008), henceforth referred to as “KS3”. We therefore consider a total of six estimators

in this section. For each estimator, we consider multiple starting values. In particular, in

addition to S2 and S3 (the LPM and probit) we also consider feasible versions of S5 and S6,

henceforth denoted “S5′” and “S6′”, respectively, in which βs
1 = β̂1,LPM and βs

2 = κ|β̂2,LPM|,
where β̂1,LPM and β̂2,LPM are the LPM estimates of β0

1 and β0
2, respectively, κ = 2.5 in S5′ and

κ = 5 in S6′. KS1–KS3 and SKS are initiated using all four specifications. Probit is for obvious

reasons only initiated using S2, S5′ and S6′. As in Section 3, k(·) is chosen to be the logistic

PDF.

As in Section 2, we require the normalization of one coefficient to 1 for identification. We

choose to normalize upon the impatience parameter, both so that we may compare other esti-

mates relative to this main parameter of interest in Sutter et al. (2013), but also because this is

the only variable for which the estimate is clearly different from 0 (see Rothe 2009). Because

the estimated effect is negative, the sign of the normalized coefficients change. The normal-

ization of the LPM and probit models were carried out post-estimation, which means that

their standard errors cannot be obtained in the usual manner, but must instead be obtained

via the Delta method. The Delta method was implemented using both robust and non-robust
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standard errors from the probit and LPM estimators. Since the robust and non-robust stan-

dard errors only marginally differ, with no change in parameter significance, we only present

results based on implementing the Delta method using non-robust standard errors. The stan-

dard errors of the KS and SKS estimators are calculated from the inverse of the Fisher infor-

mation matrix. Recall that inference in the KS and SKS estimators is robust to multiplicative

heteroscedasticity of a general but known form and heteroscedasticity of an unknown form if

it depends only on the single-index restriction.

In addition to the estimated coefficients, we calculate marginal effects. For KS, these effects

are given by:

dĜ(x′i β)
dxi

= ĝ(x′i β)β :=

−1
h

dv(x′i β)
dx′i β

w(x′i β)− v(x′i β)
dw(x′i β)

dx′i β

w(x′i β)
2

 β. (12)

An important point about (12) is that ĝ(·) may be negative, implying that marginal effects may

have different signs than β. If this is the case, ĝ(·) is not a PDF, which invalidates dĜ(x′i β)/dxi

as a measure of marginal effects.14 For the data at hand, ĝ(·) is negative in 77% of all obser-

vations, suggesting this is a nontrivial problem.

The marginal effects for the SKS estimator are given by

dF̂(x′i β)
dxi

= f̂ (x′i β)β :=

[
1

(n − 1) h

n

∑
j ̸=i

kh((xj − xi)
′β)

]
β, (13)

where f̂ (·) is the standard (leave-one-out) kernel PDF function. In contrast to ĝ(·), f̂ (·) is

nonnegative by construction regardless of the choice of k(·), provided of course that it is a

valid kernel function. Thus, unlike dĜ(x′i β)/dxi, dF̂(x′i β)/dxi always has the same (correct)

sign as β.

Both (12) and (13) are based on setting the bandwidth equal to h = (nπ4/63)−1/5, which

minimizes the integrated mean squared error of f̂ (·) when k(·) is the logistic PDF (Abo-El-

Hadid 2018). Hence, unlike for the coefficients, for the marginal effects we only compute one

version of KS (and SKS).

14This issue arises because the Nadaraya–Watson estimator, Ĝ(x′i β), is not bounded away from 0 as explained
in Section 2.
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4.3 Results

Tables 3 and 4 report the estimated coefficients. While Table 3 contains the results for KS1–

KS3, Table 4 contains the results for the LPM, probit and SKS. KS2 (where the bandwidth is

estimated jointly with the coefficients) failed to converge when initialized based on S5′. The

same problem occurred for probit when initialized based on S5′ and S6′. The results for these

specifications are therefore omitted.

INSERT TABLES 3 AND 4 ABOUT HERE

The first thing to note about Table 3 is that all three versions of KS are highly sensitive to

the choice of starting values. This is visible from the KS1 and KS2 implementations that use

Matlab, but it is even more apparent from the KS3 implementation using the sml command

in Stata. Indeed, looking across the four initializations, we see that in absolute value terms,

the estimated coefficients can be several times larger for one initialization than for another,

and that many coefficient estimates even change signs. The significance of the estimated

coefficients varies, too. Many estimates are highly significant for some initializations and

insignificant for others. This sensitivity is problematic not only from a reliability point of

view but also because it lends itself to misuse, as researchers may obtain almost any result

they want by a creative choice of initialization.

The picture is quite different if we instead look at the SKS estimates reported in Table 4.

In fact, at the third decimal level of accuracy considered in the table, the estimation results

do not depend on the initialization at all. This suggests that SKS is able to locate the global

optimum and that the SKS objective function is considerably more well-behaved than the KS

objective function. The standard errors also do not change and as a result the significance of

the estimated coefficients is unaffected by the initialization.

INSERT TABLE 5 AND FIGURE 1 ABOUT HERE

In Table 5, we further contrast the properties of the SKS and KS estimators by examining

the distribution of their estimated marginal effects for every regressor over the full sample.15

Consistent with the results for the estimated coefficients, we see that for SKS the marginal ef-

fects do not differ much across observations, and that they have the same (correct) sign as the

corresponding coefficients. By contrast, for KS the marginal effects vary quite substantially

15We treat all regressors as continuous because of the difficulty to calculate marginal effects for binary variables
for semi-parametric kernel estimators as the one considered in this paper.
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and many change sign. The reason for the change of signs is, as already pointed out, that

ĝ(x′i β) may be negative. In order to illustrate this point, in Figure 1 we plot ĝ(x′i β) and f̂ (x′i β)

over the values of x′i β. Two observations stand out. First, unlike f̂ (·), ĝ(·) has several kinks

and flat segments, which in view of (12) suggests that gradient-based optimization of the KS

objective function can be difficult. Second, ĝ(·) is negative for a majority of values.

Because of the above results, we hereafter disregard KS. Comparing instead the SKS re-

sults to those obtained by the LPM and probit (Table 4), we first see that although the results

tend to be directionally consistent across specifications, the precise point estimates vary by

estimator. From a significance standpoint, all three approaches agree that age is a significant

predictor of savings behavior, while risk and ambiguity aversion, gender, grades in German,

and number of siblings appear to have only small, insignificant relative effects on savings.

The main difference between SKS, on the one hand, and the LPM and probit, on the other

hand, concerns the effect of math grades, which is large and statistically significant according

to the LPM and probit, but small and insignificant according to SKS.

It is worth considering what this overall set of results may indicate about the comparison

of parametric and semiparametric estimation in the Sutter et al. setting. First, the predomi-

nant similarity of the parametric results to the SKS results suggests that, generally, parametric

estimators yield reasonable approximations of the preferred semiparametric model for this

setting. Yet the agreement is not unequivocal, and where the two approaches differ in their

findings (for math grades), the SKS should likely be preferred: although the parametric ap-

proximations appear generally quite close to the semiparametric model, the model errors

don’t appear to be either standard normal or uniform, in which case the parametric estima-

tors considered remain inconsistent for the structural parameters.

Still, there is the question of why inference for math grades in particular might differ,

given that we find the parametric estimators yield generally reasonable approximations of

the semiparametric model for this setting. Considering especially the formal inconsistency of

the parametric estimators when the error distribution is misspecified, this discrepancy might

arise for several reasons. But one possibility that we wish to highlight here speaks to the

broader literature around math skills, impatience, and savings.

In this literature, on the one hand a number of studies attest to a strong correlation between

numeracy or math skills and positive financial behaviors, including savings (e.g. Banks and

Oldfield 2007; Benjamin et al. 2013; Brounen et al. 2016; Estrada-Mejia et al. 2016; Lusardi

2012; Marley-Payne et al. 2022), with some quasi-experimental studies further supporting a
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positive causal effect of math skills on financial behavior in some settings (Bernheim et al.

2001; Brown et al. 2016; Cole et al. 2016). Yet a number of other studies also document cor-

relation between time preferences and educational performance (e.g. Cadena and Keys 2015;

Castillo et al. 2019; Delaney et al. 2013; Golsteyn et al. 2014; Hanushek et al. 2023, 2021; Horn

and Kiss 2020, and specifically math performance (Castillo et al. 2011; Lührmann et al. 2018).

We similarly find that math grades are a significant predictor of impatience in the Sutter et al.

(2013) sample.

In the context of this relationship between math grades and impatience, one possible ex-

planation for the significance of math grades in probit and LPM is that the inconsistency

of parametric models may lead to misleading significance of irrelevant regressors (“math

grades”) that are significant predictors of relevant included regressors (“impatience”). The

reason for this is that the misspecification error that results from an erroneous parametric

assumption enters as part of the regression error and depends on the relevant regressors of

the model. Consequently, irrelevant regressors may become significant because of their cor-

relation with the error term. Thus, although math skills may indeed have an independent

effect on savings in some settings, it is possible that the reason why parametric estimation

yields significant estimates of math grades in this setting – unlike SKS and in contrast to their

typical agreement – is instead due to the well-known relationship between math grades and

impatience in the context of a misspecified parametric model.

Summarizing, the predominant similarity of results between SKS and the probit reported

in Sutter et al. supports the findings and main conclusions of their study, with the only dif-

ference concerning math achievement. This suggests a couple of main takeaways: first, pos-

itively that Sutter et al.’s results appear mostly robust to misspecification concerns, but sec-

ond, that having supposed a probit model represents an unnecessary additional assumption

in their analysis that can lead to misleading conclusions, as may be the case for math grades.

We finally note that the parametric findings could be credibly supported only when validated

using SKS, since the KS results were too unstable to yield reliable inference.

5 Concluding remarks

In this paper, we have proposed a simplified version of the classical KS estimator of binary

choice models, labelled “SKS”. We have shown that this new estimator is relatively easy to

implement, is numerically more stable and performs better in simulations than the original.
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When compared to parametric binary choice estimators, SKS consistently outperforms these

estimators under distributional mispecification, while retaining good relative performance

when the parametric estimator is correctly specified. Using the SKS estimator, we revisit the

results of Sutter et al. (2013) to show that although the central finding holds, a secondary

finding of that analysis is not supported by careful semiparametric analysis. We close with a

brief discussion of some possible extensions and generalizations of the SKS estimator.

Endogeneity. Rothe (2009) propose a two-step semi-parametric ML estimator for binary

choice models with endogenous regressors. In the first step, Rothe estimates a reduced form

equation for the endogenous regressors and extract the corresponding residuals. In the sec-

ond step, the residuals are added as control variables and the resulting model is estimated

using the KS estimator. We conjecture that the SKS estimator can be used in place of KS in the

second step. This is expected to improve small-sample properties of Rothe’s estimator.

Choice of bandwidth. We have only briefly touched upon the choice of bandwidth h in the

SKS estimator. Although the simulation results show that a simple fixed choice of h works

well, the small-sample performance of the estimator may become even better if a data-driven

approach is used. For non-parametric CDF estimation, Bowman et al. (1998) propose a cross-

validation method, while Hansen (2004) proposes a refined plug-in bandwidth rule, which

minimizes an estimate of the asymptotic mean integrated squared error. A third possibility

– inspired by the same studies used to motivate KS2 in our simulation and empirical studies

– is to treat h as an additional parameter and estimate it jointly with the coefficients of the

model in the numerical optimization of the SKS objective function.

Ordered choice. Klein and Sherman (2002) generalized the results of KS to an ordered choice

framework, in which the binary model considered here arise as a special case. The results in

this paper can be generalized along the same lines.
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A Proofs

Our asymptotic results follow closely those of KS. We begin by deriving uniform consistency

results for F̂(x) and its two first derivatives. This is Lemma A.1, which is our version of

Lemma 2 in KS.

Lemma A.1 (Kernel consistency). Suppose that Assumptions 1–3, 6 and 7 are met. Then,

sup
v∈R

|F̂(v)− F(v)| = Op

(√
ln ln n

n

)
, (A.1)

sup
v∈R

∣∣∣∣dF̂(v)
dv

− dF(v)
dv

∣∣∣∣ = Op

(√
ln n
nh

+ h2

)
, (A.2)

sup
v∈R

∣∣∣∣d2F̂(v)
(dv)2 − d2F(v)

(dv)2

∣∣∣∣ = Op

(√
ln n
nh3 + h2

)
. (A.3)

Proof. Consider F̂(v). We have
∫

v2k(v)dv < ∞ and since k(v) = k(−v) (symmetry) we also

have
∫

vk(v)dv = 0. Hence, if we in addition assume that h is such that h2
√

n/ ln ln n → 0,

then by Theorem 3.2 of Winter (1979), F̂(v) has the so-called “Chung–Smirnov property”. This

means that

sup
v∈R

|F̂(v)− F(v)| = Op

(√
ln ln n

n

)
. (A.4)

In order to see what h2
√

n/ ln ln n → 0 means for h, note that h2
√

n/ ln ln n ≥ 0. Hence,

requiring that h2
√

n/ ln ln n → 0 is equivalent to requiring h4n/ ln ln n → 0, which will be the

case if h ∼ n−α with α ≥ 1/4.

We now turn to the derivatives. Clearly, since F̂(x) is an estimator of the CDF F(x),

dF̂(x)/dx = f̂ (x) is an estimator of the PDF f (v). This means that the rates of consistency of

dF̂(v)/dv and d2F̂(v)/(dv)2 can be taken from Hansen (2008), who establishes uniform rates

for kernel estimators of PDFs when data are weakly dependent. In particular, by his Theorem
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6 for regular second-order kernels and scalar v,

sup
v∈R

∣∣∣∣dF̂(v)
dv

− dF(v)
dv

∣∣∣∣ = sup
v∈R

| f̂ (v)− f (v)| = Op

(√
ln n
nh

+ h2

)
, (A.5)

sup
v∈R

∣∣∣∣d2F̂(v)
(dv)2 − d2F(v)

(dv)2

∣∣∣∣ = sup
v∈R

∣∣∣∣∣d f̂ (v)
dv

− d f (v)
dv

∣∣∣∣∣ = Op

(√
ln n
nh3 + h2

)
, (A.6)

which holds provided only that h = o(1). These results therefore hold under our condition

that h = O(n−1/4). This establishes the required rates for the derivatives and hence the proof

of the lemma is complete.

Proof of Theorem 1. To establish consistency, we take the usual route (see, for example, KS,

Proof of Theorem 3) and first show that the estimated and normalized likelihood function

n−1ℓ̂SKS(β) converges uniformly to n−1ℓ(β). We then show that n−1ℓ(β) attains a unique

maximum at β = β0, which implies both that β0 is identified and that β̂ is consistent.

We begin by noting that since n does not depend on β, scaling of the objective function by

this quantity is inconsequential. We therefore proceed to evaluate ℓ̂SKS(β)/n;

n−1ℓ̂SKS(β) =
1
n

n

∑
i=1

[yi ln F̂(x′i β) + (1 − yi) ln(1 − F̂(x′i β))]. (A.7)

Consider n−1 ∑n
i=1 yi ln F̂(x′i β). By Taylor expanding ln F̂(v) about F(v),

ln F̂(v) = ln F(v) + F(v)−1[F̂(v)− F(v)] + Op([F̂(v)− F(v)]2). (A.8)

Further use of Lemma A.1 and the assumption that F(v) > 0 uniformly in v yields

sup
v∈R

| ln F̂(v)− ln F(v)| = Op(F̂(v)− F(v)) = Op

(√
ln ln n

n

)
= op(1), (A.9)

which holds provided h ∼ n−α with α ≥ 1/4. By using this, the triangle inequality and
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yi ∈ {0, 1},

sup
β

∣∣∣∣∣ 1n n

∑
i=1

yi ln F̂(x′i β)−
1
n

n

∑
i=1

yi ln F(x′i β)

∣∣∣∣∣
= sup

β

∣∣∣∣∣ 1n n

∑
i=1

yi[ln F̂(x′i β)− ln F(x′i β)]

∣∣∣∣∣
≤ 1

n

n

∑
i=1

yi sup
β

| ln F̂(x′i β)− ln F(x′i β)|

≤ 1
n

n

∑
i=1

sup
β

| ln F̂(x′i β)− ln F(x′i β)| = op(1). (A.10)

The same arguments can be used to show that

sup
β

∣∣∣∣∣ 1n n

∑
i=1

(1 − yi) ln(1 − F̂(x′i β))−
1
n

n

∑
i=1

(1 − yi) ln(1 − F(x′i β))

∣∣∣∣∣ = op(1). (A.11)

Hence, by adding the results,

sup
β

|n−1ℓ̂SKS(β)− n−1ℓ(β)| = op(1). (A.12)

The rest of the proof follows by the same arguments used by Rothe (2009, Proof of Theorem

2). Note in particular that since ℓ̂(β) is an ordinary parametric log-likelihood function, by

a standard uniform law of large numbers (see, for example, Newey and McFadden 1994,

Lemma 2.4), it converges uniformly in β to its expectation;

sup
β

|n−1ℓ(β)− n−1E[ℓ(β)]| = op(1), (A.13)

with

n−1E[ℓ(β)] =
1
n

n

∑
i=1

E[yi ln F(x′i β) + (1 − yi) ln(1 − F(x′i β))]

=
1
n

n

∑
i=1

E[E(yi|xi) ln F(x′i β) + (1 − E(yi|xi)) ln(1 − F(x′i β))]

=
1
n

n

∑
i=1

E[F(x′i β
0) ln F(x′i β) + (1 − F(x′i β

0)) ln(1 − F(x′i β))]

= E[F(x′1β0) ln F(x′1β) + (1 − F(x′1β0)) ln(1 − F(x′1β))], (A.14)
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where the last equality holds because xi is iid over i. The last expectation attains its maximum

whenever F(x′1β0) = F(x′1β), which by assumption can only happen if β = β0. Consistency

now follows from standard arguments (see, for example, Newey and McFadden 1994, Theo-

rem 2.1).

Proof of Lemma 1. By using Lemma A.1, the fact that ∥β∗ − β0∥ ≤ ∥β̂ − β0∥ = op(1) by Theo-

rem 1 and the steps used in the proof of that theorem to establish the uniform convergence of

n−1ℓ̂SKS(β) to n−1ℓ̂(β), we can show that

sup
β

∥∥∥∥∥ 1
n

d2ℓ̂SKS(β∗)

dβ(dβ)′
− 1

n
d2ℓ(β0)

dβ(dβ)′

∥∥∥∥∥ = Op

(√
ln n
nh3 + h2

)
. (A.15)

By using l’Hôpital’s rule, we can show that ln n/(nh3) + h2 → 0 if h ∼ n−α with 0 < α <

1/3, which is clearly the case under our assumption about the rate of shrinking of h. Hence,

Op(
√

ln n/(nh3) + h2) = op(1).

Let us now consider n−1d2ℓ(β0)/[dβ(dβ)′]. A direct calculation yields

dℓ(β)

dβ
=

n

∑
i=1

yi − F(x′i β)
F(x′i β)[1 − F(x′i β)]

dF(x′i β)
dβ

, (A.16)

which can be differentiated again to obtain

d2ℓ(β)

dβ(dβ)′
=

n

∑
i=1

[
− 1

F(x′i β)[1 − F(x′i β)]
dF(x′i β)

dβ

(
dF(x′i β)

dβ

)′

−
[1 − 2F(x′i β)][yi − F(x′i β)]

F(x′i β)
2[1 − F(x′i β)]

2
dF(x′i β)

dβ

(
dF(x′i β)

dβ

)′

+
yi − F(x′i β)

F(x′i β)[1 − F(x′i β)]
d2F(x′i β)
dβ(dβ)′

]
. (A.17)
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Hence, by a law of large numbers for iid variates,

1
n

d2ℓ(β)

dβ(dβ)′
→p lim

n→∞

1
n

n

∑
i=1

E

[
− 1

F(x′i β)[1 − F(x′i β)]
dF(x′i β)

dβ

(
dF(x′i β)

dβ

)′

−
[1 − 2F(x′i β)][yi − F(x′i β)]

F(x′i β)
2[1 − F(x′i β)]

2
dF(x′i β)

dβ

(
dF(x′i β)

dβ

)′

+
yi − F(x′i β)

F(x′i β)[1 − F(x′i β)]
d2F(x′i β)
dβ(dβ)′

]

= E

[
− 1

F(x′1β)[1 − F(x′1β)]

dF(x′1β)

dβ

(
dF(x′1β)

dβ

)′

−
[1 − 2F(x′1β)][y1 − F(x′1β)]

F(x′1β)2[1 − F(x′1β)]2
dF(x′1β)

dβ

(
dF(x′1β)

dβ

)′

+
y1 − F(x′1β)

F(x′1β)[1 − F(x′1β)]

d2F(x′1β)

dβ(dβ)′

]
(A.18)

as n → ∞. Let ui := yi − F(x′i β
0) = yi − E(yi|xi), which under our conditions is iid with

E(ui|xi) = 0 and var(ui|xi) = var(yi|xi) = F(x′i β
0)[1 − F(x′i β

0)] (see, for example, Ichimura

1993). By using this and the law of iterated expectations, the above limiting expression for

n−1d2ℓ(β0)/[dβ(dβ)′] at β = β0 reduces to

1
n

d2ℓ(β0)

dβ(dβ)′
→p E

[
− 1

F(x′1β0)[1 − F(x′1β0)]

dF(x′1β0)

dβ

(
dF(x′1β0)

dβ

)′

−
[1 − 2F(x′1β0)]u1

F(x′1β0)2[1 − F(x′1β0)]2
dF(x′1β0)

dβ

(
dF(x′1β0)

dβ

)′

+
u1

F(x′1β0)[1 − F(x′1β0)]

d2F(x′1β0)

dβ(dβ)′

]

= E

[
− 1

F(x′1β0)[1 − F(x′1β0)]

dF(x′1β0)

dβ

(
dF(x′1β0)

dβ

)′

−
[1 − 2F(x′1β0)]E(u1|x1)

F(x′1β0)2[1 − F(x′1β0)]2
dF(x′1β0)

dβ

(
dF(x′1β0)

dβ

)′

+
E(u1|x1)

F(x′1β0)[1 − F(x′1β0)]

d2F(x′1β0)

dβ(dβ)′

]

= −E

[
1

F(x′1β0)[1 − F(x′1β0)]

dF(x′1β0)

dβ

(
dF(x′1β0)

dβ

)′ ]
. (A.19)
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By adding the results,

1
n

d2ℓ̂SKS(β∗)

dβ(dβ)′
=

1
n

d2ℓ(β0)

dβ(dβ)′
+ op(1)

→p −E

[
1

F(x′1β0)[1 − F(x′1β0)]

dF(x′1β0)

dβ

(
dF(x′1β0)

dβ

)′ ]
(A.20)

as n → ∞, which is what we wanted to show.

Proof of Lemma 2. This proof follows closely the proof of Theorem 5.2 in Ichimura (1993).

From the expression for dℓ(β0)/dβ given in Proof of Lemma 1,

dℓ̂SKS(β0)

dβ
− dℓ(β0)

dβ

=
n

∑
i=1

ûi

F̂(x′i β
0)[1 − F̂(x′i β

0)]

dF̂(x′i β
0)

dβ
−

n

∑
i=1

ui

F(x′i β
0)[1 − F(x′i β

0)]

dF(x′i β
0)

dβ

=
n

∑
i=1

(
ûi

F̂(x′i β
0)[1 − F̂(x′i β

0)]
− ui

F(x′i β
0)[1 − F(x′i β

0)]

)
dF̂(x′i β

0)

dβ

+
n

∑
i=1

ui

F(x′i β
0)[1 − F(x′i β

0)]

(
dF̂(x′i β

0)

dβ
−

dF(x′i β
0)

dβ

)
, (A.21)

where ûi := yi − F̂(x′i β
0) and ui := yi − F(x′i β

0) as in Proof of Lemma 2. Consider the second

term on the right-hand side, which as the same form as the one in Lemma 5.8 of Ichimura

(1993). We therefore use the steps as in the proof of that lemma to show that the second term

above is op(1) when divided by
√

n. We begin by noting that the mean is zero. As for the

variance, making use of the definition of F̂(x′i β) as F̂(x′i β) := (n − 1)−1 ∑n
j ̸=i Kh((xj − xi)

′β)

where Kh(v) := K(v)/h, we can write

ui

F(x′i β
0)[1 − F(x′i β

0)]

(
dF̂(x′i β

0)

dβ
−

dF(x′i β
0)

dβ

)
=

1
n − 1

n

∑
j ̸=i

uiaij (A.22)

where

aij :=
1

F(x′i β
0)[1 − F(x′i β

0)]

(
dKh((xj − xi)

′β0)

dβ
−

dF(x′i β
0)

dβ

)

=
1

F(x′i β
0)[1 − F(x′i β

0)]

(
kh((xj − xi)

′β0)(xj − xi)

h
−

dF(x′i β
0)

dβ

)
(A.23)
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with kh(v) = dKh(v)/dv. In this notation, the second term on the right-hand side of (A.21)

divided by
√

n is

1√
n

n

∑
i=1

ui

F(x′i β
0)[1 − F(x′i β

0)]

(
dF̂(x′i β

0)

dβ
−

dF(x′i β
0)

dβ

)
=

1√
n(n − 1)

n

∑
i=1

n

∑
j ̸=i

uiaij. (A.24)

Making use of this and the fact that ui is iid, the sought variance is given by

E

[
1√

n(n − 1)

n

∑
i=1

n

∑
j ̸=i

uiaij

(
1√

n(n − 1)

n

∑
i=1

n

∑
j ̸=i

uiaij

)′]

=
1

n(n − 1)2

n

∑
i=1

n

∑
j ̸=i

n

∑
k=1

n

∑
l ̸=k

E(uiukaija′kl)

=
n − 2
n − 1

E(u2
i aija′ik) +

1
n − 1

E(u2
i aija′ij) +

1
n − 1

E(uiujaija′ji), (A.25)

where i, j and k are different (see Ichimura 1993, page 116). The first term on the right domi-

nate the other two. We therefore consider this term first. Because i, j and k are different,

E(u2
i aija′ik)

= E

{
u2

i
F(x′i β

0)2[1 − F(x′i β
0)]2

E

[(
kh((xj − xi)

′β0)(xj − xi)

h
−

dF(x′i β
0)

dβ

)

×
(

kh((xk − xi)
′β0)(xk − xi)

h
−

dF(x′i β
0)

dβ

)′

|yi, xi

]}

= E

{
u2

i
F(x′i β

0)2[1 − F(x′i β
0)]2

(
E

[
kh((xj − xi)

′β0)(xj − xi)

h
|yi, xi

]
−

dF(x′i β
0)

dβ

)

×
(

E

[
kh((xk − xi)

′β0)(xk − xi)

h
|yi, xi

]
−

dF(x′i β
0)

dβ

)′}
, (A.26)

where the bracketed terms are Op(h2) by Lemma A.2 of Ichimura (1993). It follows that

n − 2
n − 1

E(u2
i aija′ik) = O(h4) = o(1), (A.27)

since h = o(1). The last terms on the right-hand side of (A.25) are o(1) too, provided nh2 → ∞.
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This is so because haij = Op(1) and hence

1
n − 1

E(u2
i aija′ij) =

1
(n − 1)h2 E(u2

i haijha′ij) = op(1) (A.28)

if nh2 → ∞. Therefore, since the variance is o(1), we have∥∥∥∥∥ 1√
n

n

∑
i=1

ui

F(x′i β
0)[1 − F(x′i β

0)]

(
dF̂(x′i β

0)

dβ
−

dF(x′i β
0)

dβ

)∥∥∥∥∥ = op(1) (A.29)

We now continue onto the first term on the right-hand side of (A.21). From

F̂(x′i β)[1 − F̂(x′i β)]F(x′i β)[1 − F(x′i β)]

(
ûi

F̂(x′i β)[1 − F̂(x′i β)]
− ui

F(x′i β)[1 − F(x′i β)]

)
= ûiF(x′i β)[1 − F(x′i β)]− ui F̂(x′i β)[1 − F̂(x′i β)]

= −[F̂(x′i β)− F(x′i β)]F(x′i β)[1 − F(x′i β)]

+ ui(F̂(x′i β)[1 − F̂(x′i β)]− F(x′i β)[1 − F(x′i β)])

= (ûi − ui)F(x′i β)[1 − F(x′i β)] + ui([F̂(x′i β)− F(x′i β)][1 − F̂(x′i β)]

− F(x′i β)[F̂(x′i β)− F(x′i β)])

= −[F̂(x′i β)− F(x′i β)]F(x′i β)[1 − F(x′i β)]

+ ui[F̂(x′i β)− F(x′i β)][1 − F̂(x′i β)− F(x′i β)], (A.30)
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we obtain

n

∑
i=1

(
ûi

F̂(x′i β
0)[1 − F̂(x′i β

0)]
− ui

F(x′i β
0)[1 − F(x′i β

0)]

)
dF̂(x′i β

0)

dβ

= −
n

∑
i=1

[F̂(x′i β)− F(x′i β)]
F̂(x′i β)[1 − F̂(x′i β)]

dF̂(x′i β
0)

dβ

+
n

∑
i=1

ui[F̂(x′i β)− F(x′i β)][1 − F̂(x′i β)− F(x′i β)]
F̂(x′i β)[1 − F̂(x′i β)]F(x′i β)[1 − F(x′i β)]

dF̂(x′i β
0)

dβ

= −
n

∑
i=1

[F̂(x′i β)− F(x′i β)]
F̂(x′i β)[1 − F̂(x′i β)]

dF(x′i β
0)

dβ

+
n

∑
i=1

ui[F̂(x′i β)− F(x′i β)][1 − F̂(x′i β)− F(x′i β)]
F̂(x′i β)[1 − F̂(x′i β)]F(x′i β)[1 − F(x′i β)]

dF(x′i β
0)

dβ

−
n

∑
i=1

[F̂(x′i β)− F(x′i β)]
F̂(x′i β)[1 − F̂(x′i β)]

(
dF̂(x′i β

0)

dβ
−

dF(x′i β
0)

dβ

)

+
n

∑
i=1

ui[F̂(x′i β)− F(x′i β)][1 − F̂(x′i β)− F(x′i β)]
F̂(x′i β)[1 − F̂(x′i β)]F(x′i β)[1 − F(x′i β)]

(
dF̂(x′i β

0)

dβ
−

dF(x′i β
0)

dβ

)
. (A.31)

The terms that appear here are analogous to those considered in Lemmas 5.8–5.10 of Ichimura

(1993). They are op(1) when divided by
√

n. Together with the triangle inequality, the above

results imply∥∥∥∥∥ 1√
n

dℓ̂SKS(β0)

dβ
− 1√

n
dℓ(β0)

dβ

∥∥∥∥∥ = op(1). (A.32)

Moreover, by standard arguments (see, for example, Ichimura 1993, Proof of Theorem 5.2, or

KS, Proof of Theorem 4),

1√
n

dℓ(β0)

dβ
=

1√
n

n

∑
i=1

ui

F(x′i β
0)[1 − F(x′i β

0)]

dF(x′i β
0)

dβ
→d N(0r×1, Σ) (A.33)
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as n → ∞, where

Σ := lim
n→∞

1
n

n

∑
i=1

n

∑
j=1

E

[
E(uiuj|xi, xj)

F(x′i β
0)2[1 − F(x′i β

0)]F(x′jβ
0)2[1 − F(x′jβ

0)]

×
dF(x′i β

0)

dβ

(
dF(x′jβ

0)

dβ

)′ ]

= lim
n→∞

1
n

n

∑
i=1

E

[
E(u2

i |xi)

F(x′i β
0)2[1 − F(x′i β

0)]2
dF(x′i β

0)

dβ

(
dF(x′i β

0)

dβ

)′]

= lim
n→∞

1
n

n

∑
i=1

E

[
1

F(x′i β
0)[1 − F(x′i β

0)]

dF(x′i β
0)

dβ

(
dF(x′i β

0)

dβ

)′]

= E

[
1

F(x′1β0)[1 − F(x′1β0)]

dF(x′1β0)

dβ

(
dF(x′1β0)

dβ

)′]
, (A.34)

which holds since E(uiuj|xi, xj) = 0 for i ̸= j and E(u2
i |xi) = F(x′i β

0)[1 − F(x′i β
0)] (see Proof

of Lemma 1). The fourth equality is due to iid-ness.

The asymptotic normality of n−1/2dℓ(β0)/dβ and the convergence of n−1/2dℓ̂SKS(β0)/dβ

to n−1/2dℓ(β0)/dβ imply

1√
n

dℓ̂SKS(β0)

dβ
=

1√
n

dℓ(β0)

dβ
+ op(1) →d N(0r×1, Σ), (A.35)

as required.
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Figure 1: Plotting ĝ(x′i β) and f̂ (x′i β) over x′i β.

Notes: While the horizontal axis represents values of x′i β, the vertical axis represents values of ĝ(x′i β) and f̂ (x′i β).
The blue (solid) and red (dashed) lines are for f̂ (x′i β) and ĝ(x′i β), respectively.
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Table 4: Empirical coefficient estimates based on LPM, probit and SKS.

SKS
Regressors S3 S2 S5′ S6′ LPM Probit
Risk aversion 0.038 0.038 0.038 0.038 −0.025 −0.014

(0.063) (0.063) (0.063) (0.063) (0.262) (0.275)

Ambiguity aversion −0.050 −0.050 −0.050 −0.050 −0.066 −0.065
(0.060) (0.060) (0.060) (0.060) (0.247) (0.254)

Age 0.014∗∗ 0.014∗∗ 0.014∗∗ 0.014∗∗ 0.102∗∗ 0.089∗

(0.007) (0.007) (0.007) (0.007) (0.051) (0.046)

Female 0.040 0.040 0.040 0.040 0.065 0.091
(0.029) (0.029) (0.029) (0.029) (0.119) (0.124)

German grade −0.017 −0.017 −0.017 −0.017 −0.006 −0.016
(0.018) (0.018) (0.018) (0.018) (0, 075) (0.078)

Math grade −0.015 −0.015 −0.015 −0.015 −0.258∗ −0.251∗

(0.017) (0.017) (0.017) (0.017) (0.133) (0.134)

No. of siblings 0.017 0.017 0.017 0.017 0.111 0.070
(0.016) (0.016) (0.016) (0.016) (0.082) (0.070)

Pocket money −0.001 −0.001 −0.001 −0.001 −0.002 −0.002
(0.001) (0.001) (0.001) (0.001) (0.004) (0.003)

Notes: Probit failed to converge when initialized based on S5′ and S6′. The results in the table are
therefore based on LPM initialization (S2). See Table 3 for an explanation of the rest.

Table 5: Empirical marginal effect estimates based on KS and SKS.

Regressor Mean Min Quartile 1 Median Quartile 3 Max
KS

Risk aversion 0.033 −0.020 0.003 0.034 0.050 0.161
Ambiguity aversion 0.012 −0.007 0.001 0.012 0.018 0.057
Age −0.010 −0.046 −0.014 −0.010 −0.001 0.006
Female 0.001 −0.001 0.000 0.001 0.002 0.007
German grade −0.006 −0.030 −0.009 −0.006 −0.001 0.004
Math grade 0.019 −0.012 0.002 0.020 0.029 0.094
No. of siblings −0.016 −0.080 −0.025 −0.017 −0.002 0.010
Pocket money 0.000 0.000 0.000 0.000 0.000 0.000

SKS
Risk aversion 0.032 0.023 0.031 0.033 0.034 0.034
Ambiguity aversion −0.042 −0.045 −0.044 −0.043 −0.040 −0.030
Age 0.012 0.008 0.011 0.012 0.013 0.013
Female 0.033 0.024 0.032 0.034 0.035 0.036
German grade −0.014 −0.015 −0.015 −0.014 −0.013 −0.010
Math grade −0.012 −0.013 −0.013 −0.013 −0.012 −0.009
No. of siblings 0.014 0.010 0.013 0.014 0.015 0.015
Pocket money −0.001 −0.001 −0.001 −0.001 −0.001 −0.001

Notes: The table reports summary statistics of the distribution of the estimated marginal effects for
every regressor over the entire sample.
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